Packing for *INDION*® Resins

Moist	Resins	Dry Resins				
HDPE liner bags	25 / 50 lts	Dry Beads				
LDPE liner bags	1 cft / 25 lts	HDPE carbouys with				
Super sack	35 cft / 40 cft / 42 cft / 1000 lts	inner double plastic liner bags	25 / 50 kgs			
MS drums with liner bags	200 / 180 lts					
Fibre drums with liner bags	7 cft	Dry Powders				
PVC jars with liner bags	5 / 6 lts	HDPE carbouys with				
HDPE drums with liner bags	50 / 100 / 180 lts	inner double plastic liner bags	6 / 20 / 40 kgs			
Vaccum packing with LDPE bags	1 cft / 25 lts					

Protection of Ion Exchange Resins during Storage

Ion exchange resins, supplied in dry or moist condition, require proper care at all times. Always keep the resins drums / bags closed and in shade at a temprature between 10°C and 40°C.

Moist Resins: Resins which are supplied in moist condition should not be allowed to dry. Regularly open the drums / bags and check the condition of the resins. If the resin is not moist enough, add demineralised water to keep it in completely moist condition.

Dry Resins: Resins which are supplied as dry beads or dry powders should not be allowed to come in contact with moisture.

Measurement

Moist Resins: All water treatment resins and resins supplied in moist condition are generally sold on volume basis. The volume is measured in a column after backwashing, settling and draining of water to the bed surface. Dry Resins: All dry resins are sold on weight basis.

Warning

Strong oxidising agents such as nitric acid, degrade ion exchange resins to a considerable extent. This may result in an explosive reaction. Thus, before using strong oxidising agents, consult sources knowledgeable in handling of such material.

Our state-of-the-art manufacturing facilities are ISO 9001, ISO 14001 & ISO 45001 certified

To the best of our knowledge the information contained in this publication is accurate. Ion Exchange (India) Ltd. maintains a policy of continuous development and reserves the right to amend the information given herein without notice. Please contact our regional / branch offices for current product specifications.

INDION is the registered trademark of Ion Exchange (India) Ltd.

Corporate Office

Ion House, Dr. E. Moses Road, Mahalaxmi, Mumbai - 400011 | Tel: +91 22 6231 2000 E-mail: ieil@ionexchange.co.in

Regional and Branch Offices

Bengaluru | Bhubaneswar | Chandigarh | Chennai Delhi | Hyderabad | Kolkata | Lucknow | Vadodara Vashi | Visakhapatnam

International Division

R-14, T.T.C MIDC, Thane - Belapur Road, Rabale, Navi Mumbai - 400 701 | Tel: +91 22 6857 2400 E-mail: export.sales@ionexchange.co.in

Overseas Offices

Bangladesh | Canada | Indonesia | Kenya Malaysia | Oman | Portugal | Saudi Arabia | Singapore South Africa | Sri Lanka | Tanzania | Thailand | UAE | USA

India - Ankleshwar | Hosur | Patancheru | Rabale | Verna | Wada Overseas - Bangladesh | Indonesia | Saudi Arabia | UAE All India Service and Dealer Network

www.ionexchangeglobal.com | www.ionresins.com

The Preferred Choice

Our INDION range is backed by sustained focus on customer needs, intensive product and application R&D, sound technical support and wide application knowhow. Add to this continuous innovation, worldclass quality, state-of-the-art ISO 9001 & 14001 certified facilities, an FDA approved pharmaceutical grade resin manufacturing unit...and you get the perfect recipe that makes INDION the preferred choice across sectors for over five decades.

Wide Range. Extensive Applications.

A complete range of cation & anion resins for water and waste water treatment as well as a host of speciality applications - pharmaceutical excipients, catalysts, nuclear grade resins, chelating resins for brine softening and heavy metal removal, adsorbent grade resins, resins for removal of colour, odour, organics, nitrate & tannin, resins for purification of bio-diesel, sugar, food & beverages and many more...

- Refinery & Petrochemical
- Steel, Power & Paper
- Food & Beverages
- Pharmaceuticals Bio-technology & Electronics
- Textiles, Sugar, Auto & Mini-steel
- Cement & Chemicals

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	Applications
		ontrolled Partic	trial Water Tr cle Size Ion E		ns (CPS Resir	ns)					
	Anion Exchange		_	1	I				I		
SBA	Gel	GS 3000 (Type 1)	Styrene DVB	−N+ R ₃	Cl	0.42 – 1.2**	48 – 58	60 (OH ⁻)	1.3	CI ⁻ to OH ⁻ 25 – 30	Demineralisation in co-current and countercurrent mode. Condensate polishing & caprolactum purification.
	Cation Exchange	Resins	_	T	Г			T			
SAC	Gel	2250 Na	Styrene DVB	-SO ₃ -	Na+	0.42 – 1.2**	43 – 50	120	2.0	Na+ to H+ 8 approx.	Premium grade cation exchange resin for water softening.
0, 10		2250 H	Styrene DVB	-SO ₃ -	H⁺	0.42 – 1.2**	49 – 55	120	1.8	Na+ to H+ 8 approx.	Premium grade cation exchange resin for demineralisation.
		Industrial V	Vater Treatme	ent							
-	Anion Exchange										
		FF-IP (Type 1)	Crosslinked Polystyrene	−N+ R ₃	CI ⁻	0.3 – 1.2	47 – 55	60 (OH ⁻)	1.2	Cl ⁻ to OH ⁻ 10 – 15	Demineralisation in co-current and countercurrent mode.
	Isoporous	FF-IP (MB)	Crosslinked Polystyrene	−N+ R ₃	Cl ⁻	0.3 – 1.0	47 – 55	60 (OH ⁻)	1.2	CI ⁻ to OH ⁻ 10 – 15	Used in mixed bed.
		N-IP (Type 2)	Crosslinked Polystyrene	−N+ R ₃	Cl ⁻	0.3 – 1.2	45 – 53	40 (OH ⁻)	1.2	CI ⁻ to OH ⁻ 10 – 15	Demineralisation in co-current and countercurrent mode.
		GS 300 (Type 1)	Styrene DVB	−N+ R ₃	Cl ⁻	0.3 – 1.2	48 – 58	60 (OH ⁻)	1.3	CI ⁻ to OH ⁻ 25 – 30	Demineralisation in co-current and countercurrent mode. condensate polishing & caprolactum purification.
	Gel	GS 300 (OH)	Styrene DVB	−N+ R ₃	OH ⁻	0.3 – 1.2	60 – 70	60 (OH ⁻)	1.0	CI ⁻ to OH ⁻ 25 – 30	Premium grade anion exchange resin used for demineralisation in regenerable mixed bed application.
SBA		GS 400 (Type 2)	Styrene DVB	−N+ R ₃	Cl ⁻	0.3 – 1.2	45 – 51	40 (OH ⁻)	1.2	CI ⁻ to OH ⁻ 10 – 15	Demineralisation in co-current and countercurrent mode.
		810 (Type 1)	Styrene DVB	−N+ R ₃	CI ⁻	0.3 – 1.2	56 – 63	60 (OH ⁻)	1.0	CI ⁻ to OH ⁻ 15 – 20	Demineralisation in co-current and countercurrent mode.
		810 HC (Type 1)	Styrene DVB	−N+ R ₃	CI ⁻	0.3 – 1.2	47 – 55	60 (OH ⁻)	1.2	CI ⁻ to OH ⁻ 10 – 20	Premium grade anion exchange resin for demineralisation in co-current and countercurrent mode.
	Macroporous	810 SO ₄	Styrene DVB	-N R ₄ +	SO ₄	0.42 - 1.2	56 – 63	60 (OH ⁻)	1.0 (CI ⁻)	Cl ⁻ to OH ⁻ 15 – 20	Used in condensate polishing unit.
	Macroporous	830 (Type 1)	Styrene DVB	−N+ R ₃	CI ⁻	0.3 – 1.2	57 – 66	80 (CI ⁻)	0.95	Cl ⁻ to OH ⁻ 7 – 17	Removal of organics & colour from water.
		820 (Type 2)	Styrene DVB	−N+ R ₃	CI ⁻	0.3 – 1.2	54 – 61	40 (OH ⁻)	1.0	Cl ⁻ to OH ⁻ 10 – 15	Demineralisation in co-current and countercurrent mode.
		820 HC (Type 2)	Styrene DVB	-N+ R ₃	CI	0.3 – 1.2	46 – 53	40 (OH ⁻)	1.2	Cl ⁻ to OH ⁻ 10 – 20	Premium grade anion exchange resin for demineralisation in co-current and countercurrent mode.
WBA	Macroporous	850	Styrene DVB	-N R ₂ -N+ R ₃	Free base	0.3 – 1.2	44 – 52	60 (FB)	1.5	FB to hydrochloride 25 max	Removal of strong acids from water.
	Cation Exchange	Resins		•	·	·				•	
		220 Na	Styrene DVB	- SO ₃ ⁻	Na ⁺	0.3 – 1.2	50 – 55	120	1.8	Na+to H+ 8 approx.	Standard grade cation exchange resin for water softening.
		222 Na	Styrene DVB	- SO ₃ ⁻	Na ⁺	0.3 – 1.2	47 – 53	120	1.92	Na+to H+ 8 approx.	Premium grade cation exchange resin for water softening.
SAC	Gel	223 H	Styrene DVB	- SO ₃ ⁻	H+	0.3 – 1.2	49 – 55	120	1.9	Na+ to H+ 8 approx.	Premium grade cation exchange resin for demineralisation in regenerable mixed bed application.
		225 H	Styrene DVB	- SO ₃	H⁺	0.3 – 1.2	49 – 55	120	1.8	Na+to H+ 8 approx.	Premium grade cation exchange resin for demineralisation.

^{*} meq/dry g ** effective size: 0.50-0.65 (mm)

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	
			Vater Treatme	ent							
	Cation Exchange	Resins									
		225 Na	Styrene DVB	- SO ₃ -	Nα ⁺	0.3 – 1.2	43 – 50	140	2.0	Na+to H+ 8 approx.	Premium grade cation exchange resin for water softening.
		525 H	Styrene DVB	-SO ₃ -	H+	0.3 – 1.2	44 – 49	120	1.95	Na+ to H+ 6 approx.	Special grade cation exchanger for use in layered bed and for mixed bed condensate polishing.
		525 Na	Styrene DVB	-SO ₃ -	Nα ⁺	0.3 – 1.2	38 – 44	130	2.15	Na+ to H+ 6 approx.	Premium grade cation exchange resin for water softening.
	Gel	225 Na F	Styrene DVB	-SO ₃ -	Nα ⁺	0.3 – 1.2	43 – 50	120	2.0	Na+to H+ 8 approx.	In the treatment of foodstuffs, beverages, potable water an water used in the processing of food. This product conform to NSF / ANSI / CAN 61, NSF / ANSI / CAN 372 & is certified with IAPMO R&T.
AC		222 Na F	Styrene DVB	- SO ₃ -	Nα+	0.3 – 1.2	47 – 53	120	1.92	Na+to H+ 8 approx.	In the treatment of foodstuffs, beverages, potable water an water used in the processing of food. This product conform to NSF / ANSI / CAN 61, NSF / ANSI 44, NSF / ANSI / CA 372 & is certified with IAPMO R&T.
		222 Na BL	Styrene DVB	- SO ₃ -	Na+	0.3 – 1.2	46 – 51	120	1.9	Na+to H+ 8 approx.	Solvent free cation – in the treatment of foodstuffs, beverag potable water and water used in the processing of food.
		303	Styrene DVB	- SO ₃ -	H+	0.3 – 1.2	49 – 55	120	1.8 (H ⁺)	Na+ to H+ 8 approx	Colour indicating resin. Colour changes at the time of exhaustion.
	Macroporous- SPL	730	Styrene DVB	- SO ₃ -	H+	0.3 – 1.2	54 – 57	120	1.6 (H ⁺)	Na+ to H+ 2 - 6	Recovery of metals from aqueous and non-aqueous stream
		790	Styrene DVB	- SO ₃ -	H+	0.3 – 1.2	51 – 55	120	1.8 (H ⁺)	Na+ to H+ 2 - 6	Demineralisation in co-current, countercurrent mode and condensate water treatment.
		790 C	Styrene DVB	− SO ₃	H ⁺	0.42 - 1.2	51 – 55	120	1.7	Nato H 6	Used in condensate polishing unit.
۸.	Gel	236	Crosslinked Polyacrylic	- COO ⁻	H+	0.3 – 1.2	46 – 54	120	4.0	H+ to Na+ 80 - 120	Removal of alkaline hardness from water.
AC	Macroporous	662	Methacrylic DVB	- COO ⁻	H+	0.3 – 1.2	44 – 50	100	3.8	H+to Na+ 70 max	Removal of alkaline hardness from water.
-	Mixed Bed Resin	S									
		MB 6SR/ Refill Pack	Styrene DVB	- SO ₃ - - N+ R ₃	H ⁺ OH ⁻	0.3 – 1.2	-	60	-	-	Super-regenerated mixture of cation and anion for producultrapure water.
		MB - 11	Styrene DVB	- SO ₃ - - N+ R ₃	H ⁺ OH ⁻	0.3 – 1.2	-	60	-	-	1:1 volume ratio of cation in H ⁺ and anion in OH ⁻ to produce high purity demineralised water.
		MB – 11 GMB	Styrene DVB	- SO ₃ - - N+ R ₃	H+ OH ⁻	0.3 – 1.2	-	60	-	-	Non-regenerable mixed bed application where highest qua water is required. Colour changes at the time of exhaustion
		MB – 12	Styrene DVB	- SO ₃ - - N+ R ₃	H+ OH ⁻	0.3 – 1.2	-	60	-	-	1:2 stoichiometrically equivalent volume ratio of cation in and anion in OH ⁻ to produce high purity demineralised water.
		MB – 115	Styrene DVB	- SO ₃ - - N ⁺ R ₃	H+ OH ⁻	0.3 – 1.2	-	60	-	-	40:60 volume ratio of cation and anion to produce high purity demineralised water.
		MB 151	Styrene DVB	- SO ₃ - N+ R ₃	H+ OH ⁻	0.3 – 1.2	-	60	-	-	Non-regenerable EDM application.
		MB 1150 HP	Styrene DVB	- SO ₃ - - N+ R ₃	H ⁺ OH ⁻	0.42 – 1.2**	-	60	-	-	Production of high purity water in electronic & pharma industry.
(Oil Removal Resi	n									
	SPL	Oleophilic Resin	Styrene DVB	- SO ₃ -	Nα ⁺	0.3 - 1.2	35 – 41	120	1.6 to 1.7	-	Oil removal from steam condensate of petroleum refinerie petroleum products & water contaminated with hydrocarbo

^{*} meq/dry g ** effective size: 0.50-0.65 (mm)

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	Applications
		Potable W	ater Treatme	nt							
Po	olyiodide Resin										
	SPL	SRCD I	Crosslinked Polymer impregnated with iodine	- N+ R ₃	l ₃ ⁻	0.3 – 1.2	-	15 – 35	-	-	Disinfection of potable water.
Ar	rsenic and Iron	Removal Resin									
	SPL	ASM	Crosslinked Polystyrene	-	-	0.3 – 1.2	47 – 54	60	0.5 - 2.0 g As/l	-	Removal of Arsenic from potable water. This product conform to NSF / ANSI / CAN 61, NSF / ANSI / CAN 372 & is certifie with IAPMO R&T.
		ISR	Crosslinked Polystyrene	-	-	0.3 – 1.2	45 – 55	45	-	-	Removal of dissolved Iron from water. This product conforms to NSF / ANSI / CAN 61,NSF / ANSI / CAN 372 & is certifie with IAPMO R&T.
Flu	uoride Remova	ıl Resin									
	SPL	RS-F	Styrene DVB	NA	-	0.3 – 1.2	50 – 60	60	-	-	Removal of fluoride from water.
Pe	erchlorate Rem	oval Resin									
	SPL	PCR	Crosslinked Polystyrene	-NR ₄ +	CI ⁻	0.3 - 1.2	35 – 45	90 (CI ⁻)	0.8	-	Selective removal of perchlorate from ground water.
Co	ation Exchange	Resins									
		225 Na F	Styrene DVB	-SO ₃ -	Na+	0.3 – 1.2	43 – 50	140	2.0	Na+ to H+ 8 approx.	High purity food grade resin for treatment of potable water and food stuff. This product conforms to NSF / ANSI / CAN 67 NSF / ANSI / CAN 372 & is certified with IAPMO R&T.
SAC	Gel	2250 Na F	Styrene DVB	-SO ₃ -	Nα+	0.42 – 1.2**	43 – 50	140	2.0	Na+ to H+ 8 approx.	High purity food grade resin for treatment of potable water and food stuff. This product conforms to NSF / ANSI / CAN 67 NSF / ANSI / CAN 372 & is certified with IAPMO R&T.
		222 Na NS	Crosslinked Polystyrene	- SO ₃	Nα ⁺	0.3 – 1.2	43 – 49	120	1.9	Na+ to H+ 8 approx.	Water softening application. This product conforms to NSF /ANSI / CAN 61, NSF / ANSI / CAN 372 & is certified with IAPMO R&T. The product is manufactured by a non solvent process.
VAC	Microporous	266	Crosslinked Polyacrylic	- COO ⁻	H ⁺	0.3 – 1.2	46 – 54	120	4.2	H+ to Na+ 65 max	Removal of alkaline hardness from water.
Ar	nion Exchange	Resin									
	Macroporous	NSSR (Type 1)	Styrene DVB	−N+ R ₃	Cl ⁻	0.3 – 1.2	45 – 55	100 (CI)	0.9	Cl [−] to NO₃ [−] Negligible	Selective removal of Nitrates from water. This product conforms to NSF / ANSI / CAN 61, NSF / ANSI / CAN 372 & is certified with IAPMO R&T.
O	xidation, Reduc	ction Catalyst		1					I	T	
	SPL	ORC	-	-	-	0.3 – 1.2	45 – 55	-	-	-	Removal of halogens and oxidising agents.
		Nuclear	Grade Resins								
Ca	ation Exchange	Resins									
		223 H NG	Styrene DVB	-SO ₃ -	H+	0.3 – 1.2	49– 55	120	1.9	-	High purity ion exchange resin (in hydrogen form) for use in nuclear power plants.
SAC	Gel	2230 H NG	Styrene DVB	-SO ₃ -	H ⁺	0.42 - 1.2**	49 – 55	120	1.9	-	High purity CPS ion exchange resin (in hydrogen form) for use in nuclear power plants.
		223 Li	Styrene DVB	-SO ₃ -	Li+	0.3 – 1.2	47 – 53	120	1.9	-	High purity ion exchange resin (in lithium form) for use in nuclear power plants.
Ar	nion Exchange	Resins									
SBA	Cal	ARU 104	Crosslinked Polystyrene	N+R ₃	Cl ⁻	0.3 – 1.2	38 – 42	80	1.6	-	Recovery of Uranium from leach liquors.
oBA	Gel	GS 300 NG	Styrene DVB	-N+R ₃	OH ⁻	0.3 – 1.2	60 max	60(OH ⁻)	1.1	-	High strength strong base anion resin (Type I) for use in nuclear power plants.

* meq/dry g ** effective size: 0.50-0.65 (mm)

Cell GS 800 Poly Corosilished Polysymen Po	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	Applications
GS 3000 NG Symma			Grade Resins								
Color Colo	Anion Exchange	Resins									
Mixed Beasters Mixed Projections No.	BA Gel	GS 3000 NG		$-N^+R_3$	OH ⁻	0.42 - 1.2**	60 max	60 (OH ⁻)	1.1	-	High strength CPS strong base anion resin (Type I) for use in nuclear power plants.
CAM - 14 Spream	B/K GGI	G\$ 80		$-N^+R_3$	- SO ₃ -	0.3 – 1.2	47 – 55	-	0.8	-	Oxygen scavenging.
Nixed Resins CAM 19 DVB N. R. OH O.3 - 1.2 OH O.3 - 1.2 OH O.3 - 1.2 OH OH O.3 - 1.2 OH OH OH OH OH OH OH O	Mixed Bed Resir	ıs									
Catalyst Grade Resins Catalyst Grade	AA' ad Davisa	CAM - 14				0.3 – 1.2	-	60	-	-	1:4 volume mixture of cation and anion to produce high purity alkaline water for use in nuclear power plants.
Macroporous 140 DyB	Mixed Resins	CAM - 19	,			0.3 – 1.2	-	60	-	-	1:9 volume mixture of cation and anion. Used in nuclear power plants.
Macroporous 140 DyB		Catalyst	Grade Resins								
Macroporous 130 Syrene	Cation Exchange	<u> </u>									
190 Syrene Soy		140		- SO ₃	H+	0.42 – 1.2	<3	130	4.8*	-	Catalyst for organic reactions like esterification etc.
190 DNB		130		- SO ₃ -	H+	0.42 - 1.2	<3	130	4.8*	-	
Anion Exchange Resin Macroporous 860 Siyrene DVB -N-R; Free base 0.3 - 1.2 48 - 54 (FB) 60 (FB) 1.4 hydrochloride 25 mox As catalyst in addolization reactions. Hydrometallurgy Chelating Resins MSR Siyrene DVB Thiol H* 0.3 - 1.2 38 - 43 60 3.6* - Selective adsorption of bivalent mercury from industrial effluents. TCR Siyrene DVB Anino DVB Phosphonic No* 0.42 - 1.2 60 - 70 80 2.0 (H*) H* 10 No* 45 h* 10 Coo* 2.0 (H*) H* 10 No* 45 h* 10 Coo* 2.0 (H*) H* 10 No* 45 h* 10 Coo* 2.0 (H*) H* 10 No* 45 h* 10 Coo* 2.0 (H*) H* 10 No* 40 mox form various organic or inorganic chemical products. Cation Exchange Resins Cation Exchange Resins TOR Siyrene DVB -So, H* 0.3 - 1.2 51 - 55 120 1.8 (H*) No* 10 No* 10 H* 2 - 6 No* 10 No*	AC	190		- SO ₃	H+	0.42 – 1.2	<3	130	4.7*	-	
Macroporous 860 Styrene DVB	Gel	770		- SO ₃ -	H+	0.3 – 1.2	63 – 66	120	1.3	-	
Macroporous 860 Styrene Na'	Anion Exchange	Resin									
MSR	/BA Macroporous	860		_	Free base	0.3 – 1.2	48 – 54 (FB)	60 (FB)	1.4	hydrochloride	As catalyst in aldolization reactions.
MSR Styrene DVB Thiol H+ 0.3 - 1.2 38 - 43 60 3.6+ . Selective adsorption of bivalent mercury from industrial effluents.		Hydro	metallurgy								
TCR	Chelating Resins	5									
BSR Styrene Amino DVB Phosphonic Na+ 0.42-1.2 60-70 80 2.0 (H+) H+to Na+45 H+to Ca+4-20 H+to Ca+4-20 H+to Na+45 H+to Ca+4-20 H+to Na+45 H+to		MSR		Thiol	H+	0.3 – 1.2	38 – 43	60	3.6*	-	
BSR DVB Phosphonic Na* 0.42 - 1.2 60 - 70 80 2.0 (H*) H*to Ca*+*<20 H*to Ca*+*<20 H*to Na*-*<45 H*to Na*-*<45 H*to Na*-*<45 H*to Na*-*<45 H*to Na*-*<45 H*to Na*-*<46 H*to Na*-*<47 H*to Na*-*<48 H*to Na*-*<49 H*to N		TCR	Styrene DVB	Thio-Uronium	-	0.3 – 1.2	41 – 47	80	1.4	-	Selective recovery of mercury and precious metals.
SIR Styrene DVB Styrene St		BSR			Nα ⁺	0.42 - 1.2	60 – 70	80	2.0 (H+)	H ⁺ to Ca ⁺⁺ <20	Decalcification of secondary brine in chloralkali industry.
Cation Exchange Resins Type Styrene DVB Type DV		BSRM			Nα ⁺	0.4 – 1.2	60 – 67	80	2.1 (H+)	H ⁺ to Ca ⁺⁺ <20	, ,
The first continue of the first continue o				Iminodiacetic	Nα ⁺	0.3 – 1.2	52 – 58	90	2.2 (H+)		
Macroporous	Cation Exchange	Resins				1					
730 DVB -SO ₃ H ⁺ 0.3 - 1.2 S4 - 57 T20 T.3 (H ⁺) 2 - 6 Recovery of metals from aqueous and non-aqueous street 1.3 (H ⁺) Na ⁺ to H ⁺ 2 - 6 Recovery of metals from aqueous and non-aqueous street 1.3 (H ⁺) Na ⁺ to Na ⁺ Recovery of metals from aqueous and non-aqueous street 1.3 (H ⁺) Na ⁺ Recovery of metals from aqueous and non-aqueous street 1.3 (H ⁺) Na ⁺ Recovery of metals from aqueous and non-aqueous street 1.3 (H ⁺) Na ⁺ Recovery of metals from aqueous and non-aqueous street 1.3 (H ⁺) Na ⁺ Recovery of metals from aqueous and non-aqueous street 1.3 (H ⁺) Na ⁺ Recovery of metals from aqueous and non-aqueous street 1.3 (H ⁺) Na ⁺ Recovery of metals from aqueous and non-aqueous street 1.3 (H ⁺) Na ⁺ Recovery of metals from aqueous and non-aqueous street 1.3 (H ⁺) Na ⁺ Recovery of metals from aqueous and non-aqueous street 1.3 (H ⁺) Na ⁺ Recovery of metals from aqueous and non-aqueous street 1.3 (H ⁺) Na ⁺ Recovery of metals from aqueous and non-aqueous street 1.3 (H ⁺) Na ⁺ Recovery of metals from aqueous and non-aqueous street 1.3 (H ⁺) Na ⁺ Recovery of metals from aqueous and non-aqueous and non-aque		790		-SO ₃ -	H+	0.3 – 1.2	51 – 55	120	1.8 (H ⁺)		Recovery of metals from aqueous and non-aqueous stream
DVB —503 H+ 0.3 – 1.2 64 – 68 120 1.2 (H) 2 – 6 Recovery of metals from aqueous and non-aqueous street. Contract Crosslinked COO H+ to Na+ Recovery of metals from aqueous and non-aqueous street.	AC Macroporous	730	DVB	-SO ₃ -	H+	0.3 – 1.2	54 – 57	120	1.6 (H ⁺)		Recovery of metals from aqueous and non-aqueous stream
		740		-SO ₃	H+	0.3 – 1.2	64 – 68	120	1.2 (H ⁺)		Recovery of metals from aqueous and non-aqueous stream
	/AC Gel	236		- COO ⁻	H+	0.3 – 1.2	46 – 54	120	4.0		Recovery of metals from aqueous and non-aqueous streams

^{*} meq/dry g ** effective size: 0.50-0.65 (mm)

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	
			ocess Applicati	ion							
A	nion Exchange										
		GS 300 (OH) (Type I)	Styrene DVB	−N+ R ₃	ОН	0.3 – 1.2	60 – 70	60 (OH ⁻)	1.0	CI ⁻ to OH ⁻ 25 – 30	Removal and recovery from process streams.
	Gel	950 (Type I)	Cross linked Polyacrylic	-N+ R ₃	CI ⁻	0.4 – 1.2	54 – 64	80 (CI ⁻)	1.2	Cl ⁻ to OH ⁻ 25 – 30	Removal of high level of colour bodies from sugar syrup.
A .	Macroporous	830 S (Type 1)	Styrene DVB	−N+ R ₃	CI ⁻	0.3 – 1.2	57 – 66	80 (Cl ⁻)	0.95	CI ⁻ to OH ⁻ 7 – 17	Removal of colour bodies from sugar syrup and other process streams. This product conforms to NSF / ANSI / CAN 61 & is certified with GOLD SEAL from WQA.
		930 A (Type 1)	Crosslinked Polyacrylic	$-N^+R_3$	Cl	0.3 – 1.2	65 – 72	80 (CI ⁻)	0.8	Cl ⁻ to OH ⁻ 10 – 15	Removal of high level of colour bodies from sugar syrup.
		845 (Type 1)	Styrene DVB	-N+ R ₂ -N+ R ₃	-	0.3 – 1.2	52 – 58	60	1.1	Cl ⁻ to OH ⁻ 20 max	Treatment of non-aqueous solution such as deashing of glucose, dextrose, sorbitol, gelatin & purification of MSG.
	**	860 S	Styrene DVB	$-N^+ R_2 \\ -N^+ R_3$	Free base	0.3 – 1.2	47 – 55 (FB)	60	1.3	FB to hydrochloride 25 max	Treatment of non-aqueous solution such as deashing of glucose, dextrose, sorbitol, gelatin & purification of MSG.
BA	Macroporous	870	Styrene DVB	−N+ R₂	Free base	0.3 – 1.2	48 – 58 (FB)	60	1.6	FB to hydrochloride 25 max	Deacidification of process streams.
		880	Styrene DVB	-N+ R ₂ -N+ R ₃	Free base	0.3 – 1.2	52 – 58 (FB)	60	1.2	FB to	Colour removal from textile effluent.
		890	Styrene DVB	-N+ R ₂ -N+ R ₃	Free base	0.3 – 1.2	48 – 54 (FB)	60	1.4	FB to hydrochloride 25 max	Removal of strong acids in non water, pharma & speciality applications.
C	ation Exchange	e Resins				'				1	
C	Macroporous	790	Styrene DVB	-SO ₃ -	H+	0.3 – 1.2	51 – 55	120	1.8 (H+)	Na+ to H+ 2 - 6	Special grade cation exchanger for applications demanding higher oxidation stability such as gelatin purification, heavy metal removal etc.
	Macroporous	652	Methaacrylic acid DVB	COO ⁻	H+	0.3 – 1.2	47 – 55	100	3.5	H+ to Na+ 75 min	Ideal for the uptake of toxic / undesirable heavy metals, temporary hardness from process liquor and industrial water.
AC –	Gel	236 P	Crosslinked Polyacrylic	- COO ⁻	H+	0.3 – 1.2	46 – 54	120	4	H+ to Na+ 80 – 120	Removal of alkaline hardness from water in Beverage Industry
M	lixed Bed Resir	า			•	•	•				
		GMW 11 (GVI)	Crosslinked Polystyrene	-SO ₃ ⁻ -N+R ₂	H ⁺ OH ⁻	0.3 – 1.2	-	60	-	-	Specially developed mix of resins for use in electroplating applications. Colour changes at the time of exhaustion.

* meq/dry g

Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	
	Pharmaceut	tical Grade Res	sins							
	254	Styrene DVB	-SO ₃ -	Na ⁺	< 0.15	<u><</u> 10	-	-	-	Sustained release agent in drug formulations.
Active Pharmaceutical Ingredients (API's)	404	Styrene DVB	-SO ₃ -	Ca++	< 0.15	<u><</u> 8	-	-	-	Treatment of Hyperkalaemia.
	454	Styrene DVB	−N ⁺ R ₃	Cl ⁻	>0.075 - 45% <0.15 - 1%	<u><</u> 12	-	1.8 – 2.2***	-	Cholestyramine resin – used for lowering serum cholesterol levels. Taste masking, drug stabilisation, controlled release & active ingredient.
									•	
	204	Crosslinked Polyacrylic	- COO ⁻	H+	< 0.15	<u><</u> 5	-	10.0*	-	Taste masking of bitter drugs such as Norfloxacin, Ofloxacin, Roxithromycin, Dicyclomine Hydrochloride, Famotidine and B_{12} stabilisation etc.
	214	Crosslinked Polyacrylic	- COO ⁻	H+	< 0.15	<u><</u> 5	-	10.0*	-	Taste masking of bitter drugs such as Azithromycin
Speciality Excipient	234	Crosslinked Polyacrylic	- COO ⁻	K ⁺	< 0.15	<u><</u> 10	-	-	-	Taste masking of bitter drugs such as Ciprofloxacin, Chloroquine Phosphate etc. as well as tablet disintegration.
Resins	254	Styrene DVB	-SO ₃ -	Na ⁺	< 0.15	<u><</u> 10	-	-	-	Sustained release agent in drug formulations.
	264	Crosslinked Polyacrylic	- COO ⁻	H+	< 0.15	<u><</u> 5	-	10.0*	-	Stabilisation of Vitamin B ₁₂
	294	Crosslinked Polymethacrylic	- COO ⁻	K ⁺	< 0.15	<u><</u> 10	-	-	-	Tablet disintegrant/taste masking. Product meets specifications of Polacrilin Potassium, USP.
	464	Crosslinked Polymethacrylic	- COO ⁻	H ⁺	< 0.15	<u><</u> 5	-	10*	-	Nicotine taste masking and sustained release.

SPL : Speciality

^{*} meq/dry g
*** sodium glycocholate exchange capacity

Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	
	Adsorbent	Grade Resir	าร							
	PA 500	Styrene DVB	-	-	0.3 – 1.2	63 – 67	150	-	-	Purification of Aloe Vera juice and Methi extract.
CDI	PA 600	Styrene DVB	-	-	0.3 – 1.2	55 – 65	130	-	-	High surface area polymers for recovering non-polar substances from aqueous and non aqueous streams.
SPL	PA 800	Styrene DVB	-	-	0.3 – 1.2	54 – 60	150	-	-	Phenol removal from HCl and effluent.
	PA 1200	Styrene DVB	-	-	0.4 – 1.2	52 – 62	120	-	-	High surface area polymers for recovering non-polar substances from aqueous and non aqueous streams.
	Biodiesel Manu	ıfacture & Pu	rification							
	190	Styrene DVB	-SO ₃ -	H+	0.42 – 1.2	<3	150	4.7*	-	Esterification of FFA.
SPL	BF 100	Styrene DVB	−N+ R ₃	OH ⁻	0.3 – 1.2	63 – 75	-	0.8	-	Purification of raw bio-diesel to remove residual FFA from 0.5 - 1.0% to less than 0.1%.
	BF 170	Styrene DVB	Acidic	-	0.3 – 1.2	<u><</u> 3	-	-	-	Purification of raw bio-diesel for removal of glycerine, soap, moisture etc.

^{*} meq/dry g

SPL : Speciality

We offer several other speciality resins for a wide variety of applications. These include fine mesh resins for chromatographic separations; dessicant grade resins for moisture removal from sovlents & resins for peptide synthesis.