Technical Specifications

Model	Surface Water (TSS < 3000 mg/l) Flow rate in m3/hr	Unit Size (L \times B) in meters
UHRSCC - 30	300	11.2 x 11.2
UHRSCC - 40	400	12.1 × 12.1
UHRSCC - 50	500	14.0 × 14.0
UHRSCC- 100	1000	17.8 x 17.8
UHSRCC - 150	1500	21.6 x 21.6
UHRSCC - 200	2000	23.3 × 23.3
UHRSCC - 250	2500	24.9 x 24.9

Note: For applications other than surface water, please consult Ion Exchange (India) Ltd.

To the best of our knowledge, the information contained in this publication is accurate. Ion Exchange (India) Ltd. maintains a policy of continuous development and reserves the right to amend the information given herein without notice. Please contact our regional/branch offices for current product specifications.

INDION is the registered trademark of Ion Exchange (India) Ltd.

e ION EXCHANGE (INDIA) LTD.

Corporate Office

Ion House, Dr. E. Moses Road, Mahalaxmi, Mumbai - 400011 | Tel: +91 22 6231 2000 E-mail: ieil@ionexchange.co.in

Regional and Branch Offices

Bengaluru | Bhubaneswar | Chandigarh | Chennai Delhi | Hyderabad | Kolkata | Lucknow | Vadodara Vashi | Visakhapatnam

International Division

R-14, T.T.C MIDC, Thane - Belapur Road, Rabale, Navi Mumbai - 400 701 | Tel: +91 22 6857 2400 E-mail: export.sales@ionexchange.co.in

Overseas Offices

Bangladesh | Canada | Indonesia | Kenya Malaysia | Oman | Portugal | Saudi Arabia | Singapore South Africa | Sri Lanka | Tanzania | Thailand | UAE | USA

Manufacturina Units India - Ankleshwar | Hosur | Patancheru | Rabale | Verna | Wada Overseas - Bangladesh | Indonesia | Saudi Arabia | UAE All India Service and Dealer Network

www.ionexchangeglobal.com

f in 🗞 🖸

Ultra High Rate Solids Contact Clarifier

Ion Exchange (India) Ltd., pioneers and leaders in total water and environment solutions for over five decades, offers you the INDION® Ultra High Rate Solid Contact Clarifier (UHRSCC).

The INDION® UHRSCC is a compact, efficient and low cost clarifier for clarification of surface water and waste water. The UHRSCC design combines the technologies of the solids contact clarifier and lamella clarifier, offering the advantages of both. with enhanced performance at increased rise rate.

The INDION® UHRSCC unit is a true solids contact clarifier that combines mixing, flocculation and sedimentation in a single basin. Raw water and chemicals mix with previously formed sludge and then pass through distinct zones within the basin for reaction, flocculation, separation, sludge removal and clarification. All occur in single treatment basin for maximum treated water production in minimal space, making the INDION® UHRSCC the best choice among solids contact clarifiers.

Applications

- Clarification of surface water
- Removal of iron & manganese for potable water

Process Parameters

- Handles high inlet suspended solids in feed up to 3000 mg/l while giving consistent treated water guality of < 20 mg/l.
- Wide flow rate and size range flow rates as high as 2500 m³/hr and sizes as large as 25.0 m x 25.0 m.
- Rise rates are higher than conventional clarifiers and depending on the type of application, can be as high as 10 - 12 m/hr.
- Sludge concentrations up to 3% are achieved depending on the application.

Features	Advantages
Combined technology of solid contact clarifier and inclined plate clarifier	Improved performance at very high flow rates
Reaction, flocculation, separation, sludge removal and clarification occur in a single treatment basin	Minimal space requirement
Intimate and prolonged contact with large quantities of previously formed solids	Rapid chemical reaction Complete chemical reaction Dense, easily settled precipitates Minimum chemical requirement
Positive uniform recirculation of solids independent of feed flow	Thorough contact with solids Sudden flow fluctuation does not affect performance Uniform results obtained regardless of feed suspended solid fluctuation Minimum energy consumed
Lamella plates in clarification zone	Utilisation of complete area Handles higher flow rate Reduces the overall size of the equipment, and cost Better outlet quality
Entire bottom of INDION UHRSCC unit is used for settling and collection of dense precipitates	Effective solid handling and sludge removal Maximum consistency of sludge
Thickening pickets concentrate the settled sludge, which is then removed as high concentrated slurry	Minimum amount of water lost through sludge blowdown Maximum solids concentration for subsequent dewatering

Principle of Operation

Mixing Zone: Raw water and chemicals are vigorously the clarification zone is greatly enhanced by inclined mixed in the draft tube in presence of previously formed lamella plates installed near its top surface, ultimately sludge re-circulated from the bottom of the basin. A high reducing the unit size, handling more flow and giving efficiency impeller re-circulates the sludge into the better quality. The overflow from the clarification zone is reaction-flocculation zone. collected from both sides of the plates through adjustable overflow weirs. This ensures equal distribution of flow among the plates and eliminates uneven loading.

Reaction-Flocculation Zone: The reactionflocculation zone, also called as detention zone, receives the total mixed flow from the mixing zone. Flocculation is Sludge Removal and Re-circulation: A portion of the accelerated here by the intimate contact between sludge in the re-circulation settles to the bottom of the reacting chemicals and re-circulating precipitated solids basin. This settled sludge is moved to the centre of the on which the newly forming material is deposited. Part of basin by a slowly rotating scrapper. The scraped sludge the flow is equal to the raw water rate is then discharged falls into the sludge hopper where sludge thickening into the separation (clarification) zone and the remaining pickets concentrate the sludge and reduce the blow flow is re-circulated into the mixing zone. down.

Clarification Zone: The large area under the edge of the The sludge is automatically or manually removed at detention zone ensures even distribution and low velocity regular intervals. The remainder of the sludge is reentrance to the clarification zone. The water enters the circulated through the draft tube and used to increase the outer clarification zone with dense and bigger size of solids content in the flocculation zone and enhance floc particles/flocs which settle rapidly. The settling area of formation.

